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Arthroplasty

A role for artificial intelligence applications 
inside and outside of the operating theatre: 
a review of contemporary use associated 
with total knee arthroplasty
Andrew P. Kurmis1,2,3*    

Abstract 

Background  Artificial intelligence (AI) has become involved in many aspects of everyday life, from voice-activated 
virtual assistants built into smartphones to global online search engines. Similarly, many areas of modern medicine 
have found ways to incorporate such technologies into mainstream practice. Despite the enthusiasm, robust evi-
dence to support the utility of AI in contemporary total knee arthroplasty (TKA) remains limited. The purpose of this 
review was to provide an up-to-date summary of the use of AI in TKA and to explore its current and future value.

Methods  Initially, a structured systematic review of the literature was carried out, following PRISMA search principles, 
with the aim of summarising the understanding of the field and identifying clinical and knowledge gaps.

Results  A limited body of published work exists in this area. Much of the available literature is of poor methodologi-
cal quality and many published studies could be best described as “demonstration of concepts” rather than “proof of 
concepts”. There exists almost no independent validation of reported findings away from designer/host sites, and the 
extrapolation of key results to general orthopaedic sites is limited.

Conclusion  While AI has certainly shown value in a small number of specific TKA-associated applications, the major-
ity to date have focused on risk, cost and outcome prediction, rather than surgical care, per se. Extensive future work is 
needed to demonstrate external validity and reliability in non-designer settings. Well-performed studies are warranted 
to ensure that the scientific evidence base supporting the use of AI in knee arthroplasty matches the global hype.
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Background
Artificial intelligence (AI) algorithms in medicine have 
rapidly progressed from theoretical possibilities to excit-
ing real-life applications in everyday use [1]. With the 
advances in computer processing capacity and the main-
stream collection of “big data” sets [2, 3], such applica-
tions are finding an ever-widening scope in medical and 
surgical subspecialties. Specifically, within the field of 
orthopaedics, AI applications are becoming more and 
more commonplace [4, 5]. Given that many potential 
aetiologies ultimately converge leading to consideration 
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for joint replacement surgery, the potential for the appli-
cation of AI technologies in this area is great. Predicting 
the differential development of end-stage joint degenera-
tion as a result of common precursor conditions, such 
as osteoarthritis (OA), systemic inflammatory disorders, 
trauma, intra-articular infection and dysmorphology is 
one such opportunity. Some exciting early developments 
in AI applications already propose accurate prospective 
determination of the evolution of joint degeneration, 
even before radiographic or perhaps clinically detect-
able changes. In this regard, the potential for early tar-
geted intervention and genuinely disease-modifying 
effect holds much promise. While there appears to be 
much enthusiasm and many apparent applications of AI 
within lower limb arthroplasty [6], there are few robust 
summaries/reviews to provide an evidence-based foun-
dation for the prospective surgeon. Therefore, the aim of 
this structured review was to examine the contemporary 
literature regarding AI applications specifically within the 

domain of total knee arthroplasty (TKA) and to provide 
the reader with an up-to-date summary of the topic.

Methods
To ensure a relevant, accurate and representative synop-
sis of the current state-of-understanding of AI applica-
tions within TKA surgery, a structured and systematic 
search and retrieval of publications was performed 
according to the accepted Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines. The search results are depicted in Fig.  1. Three 
databases: (I) Cochrane; (II) EMBASE; and (III) Medline 
were searched from inception until 9 November 2022. 
Search results were limited in the first instance to articles 
available in the English language with available abstracts. 
The following MESH terms were used: “[(knee) AND 
(arthroplasty OR replacement)] AND [(artificial intelli-
gence OR AI)]”. Titles and abstracts of identified records 
were screened to exclude obviously irrelevant studies. 

Fig. 1  PRISMA search summary
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All articles describing AI during—or in association with 
knee arthroplasty—were reviewed. No restrictions were 
placed on age, gender, date, type of study, or length of 
follow-up. Articles were excluded if they did not specifi-
cally discuss the use of AI in relation to knee arthroplasty 
or if the full text was not available in English. The bib-
liographies of relevant papers were manually reviewed 
to identify further studies, with additional data sourced 
from international joint registries.

Initially, 697 articles were identified during preliminary 
database searching. After exclusion of duplicates, articles 
which did not match the search intent (i.e., papers not 
specifically exploring content related to AI applications 
associated with TKA) and articles not available in full 
text form, 91 full text papers were manually reviewed. At 
the end of the review process, 57 articles were deemed 
appropriate for inclusion. As a relatively new topic in the 
field, it was identified that there existed a lack of quanti-
tative research within the domain thus preventing formal 
“meta-analysis”, per se. With the preserved intent of pro-
viding a contemporary synopsis of the topic, a structured 
review of the identified literature was performed in keep-
ing with meta-synthesis principles.

Establishing the role of AI in TKA
The concept of AI is widely acknowledged to have been 
introduced in 1956 [7] defining a computational pro-
cess in which a machine (i.e., computer) was predicted 
to perform on some form of iterative process that mim-
icked elements of human cognition and processing [8], 
with limited (if any) direct human input [9]. Theoreti-
cal concepts soon became practical realities in the years 
that followed, although computer processing capacity 
long-remained the rate limiting step to application [7, 8]. 
With near exponential advances in computer speed and 
volumetric processing capacity, AI has rapidly become a 
mainstream utility in many areas of general life, includ-
ing medicine [8]. Much of the practical value of modern 
AI has come from areas where a computer can be pro-
grammed to examine large volumes of raw or refined 
data in time frames far beyond exceeding human com-
prehension [7, 10]. Once programmed instructions (i.e., 
algorithms) have been established, the computer can 
be directed to perform highly specific and reproducible 
tasks [11]. Strengths of such applications to date have 
included identifying, linking or clustering (categoriz-
ing) data variables after sifting through large amounts of 
information [12–14]—in medicine this has already been 
shown to be of great value in outcome/risk prediction 
[15, 16]. With highly-refined coding (i.e., instructions) 
the algorithm can develop the ability to recognize spe-
cific features of the data set and can therefore be consid-
ered to be “learning” [17]. Classically, the “accuracy” of 

the desired key output has been compared to a human 
“gold standard” (or human-defined expectations), and 
refinements to the operational algorithm can then be 
made. However, with increasing computing power and 
multi-layer processing capacities, the AI system can be 
“taught” to perform self-evaluation and in turn modify 
its own internal algorithmic codes [9, 18]. This subset 
of AI is called deep learning (DL) [12, 17, 19–21]. The 
system starts with a set of predetermined key outcomes 
and known, linked, associative variables. It progressively 
re-refines its ability to associate clusters with each new 
epoch (i.e., training run), thereby improving accuracy [9]. 
Modern DL neural networks [22] allow the artificial crea-
tion of multi-layered “evolutionary plexuses”, which have 
been conceptually compared to human neurons [7, 23]. 
Most modern DL systems consist of some form of artifi-
cial neural network (ANN) [14, 17, 24], which in practice 
represents a series of iterative processing steps between 
an “input” layer (e.g., where the data under consideration 
is entered) and a final “output” layer [25]. These complex 
AI systems are also known as deep convolutional neural 
networks (CNNs) [26–29].

Current artificial intelligence applications in TKA
After an extensive review of the available published lit-
erature, it appears that there is an apparent enthusiasm 
for realizing the potential of AI in joint replacement sur-
gery. Most of the applications reported to date that are 
relevant to TKA appear to exploit the current strength of 
AI in predicting outcomes or events. With this in mind, 
four key areas of utility have been recognized: imaging-
based/diagnostic applications, medical/adverse event 
prediction, hospital and administrative considerations, 
and applications directly related to surgical planning and/
or surgical performance. Each of these areas is discussed 
in sequence below.

Imaging
Generically, AI applications into the realm of semi-auto-
mated [30] (or fully automated) [31] image feature or 
pattern recognition represent one of the most success-
ful forays to date [7, 11]. Given the inherent reliance on 
information garnered from diagnostic imaging studies 
in many areas of medicine, including surgery, there is a 
natural opportunity to test and apply AI’s interpretive 
capabilities in this context. When looking specifically at 
knee arthroplasty, the majority of reported work to date 
has been related to either the diagnosis of OA [1, 15, 32, 
33] and/or the grading of OA [1] from plain radiographs 
[34, 35], or the identification of in  situ implant compo-
nents [34, 36–38]. Relatively simple diagnostic analyses 
based on single AP X-rays have been reported [32, 34], 
as well as more sophisticated works using customized, 
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multi-planar, imaging protocols [39]. Such applications 
have largely focused on either diagnostic accuracy or 
prediction of future OA disease development/evolution 
[36, 40], often with progression to TKA as a definable 
endpoint [1, 32, 36, 41]. Capitalizing on the processing 
power of modern AI algorithms, the addition of key clini-
cal baseline data to the basic digital image provision has 
been shown to further increase the precision of predic-
tive accuracy [40]. With the touted ability to accurately 
and reliably detect subtle image features that diagnose 
early (i.e., “preclinical”) arthritic changes, some authors 
have suggested an opportunity for broader screening and 
possibly the initiation of disease-modifying interven-
tions [12]. Such early guided treatment initiation has the 
potential to alter the underlying degenerative progress 
[40, 42]. Especially in early stages, the iterative capability 
of machine learning/computational processing pathways 
may also allow the identification of non-traditional diag-
nostic features and allow for permitting earlier diagnosis 
and/or initiation of treatment [43].

As the evolution of OA considered is a spectrum of 
disease presentation, a reliable prediction of clinical 
progression allows for a pre-emptive determination of 
“when” a TKA may be required [41] and may be of clini-
cal value in informing patient management discussions. 
Recent work by Houserman et  al. [39] using a machine 
learning (ML) model demonstrated valuable utility in 
predicting the future need for TKA, UKA or no surgery 
with multiclass receiver operating characteristic (ROC) 
curves greater than 0.96. The system provided 94% accu-
racy in predicting surgery versus no surgery and an 88% 
overall accuracy in predicting the need for definitive sur-
gical versus non-surgical intervention [39]. Extending 
this work beyond plain film radiographs, Tolpadi et  al. 
[42] demonstrated that a DL AI model could predict the 
future need for TKA from conventional MRI imaging 
with high accuracy (i.e., AUC of 0.94), even in patients 
without clinical evidence of OA.

The other major area of interest in AI-assisted image 
analysis has been the area of in situ component identifi-
cation. There are many clinical circumstances in which 
details regarding implanted arthroplasty components 
are not immediately available (or are simply not available 
at all), but such information is critical for patient man-
agement (e.g., planning revision surgery [37, 38]). While 
reports vary, it has been suggested that in 10% or more 
of cases, key implants that will be subject to subsequent 
revision cannot be identified prior to surgery itself [37]. 
There are many potential benefits to even small improve-
ments in the preoperative capacity to correctly confirm 
in  situ components. First, the correct (or even proprie-
tary) removal/extraction devices can be ordered to facili-
tate timely and bone-preserving techniques. Second, 

compatible trials and definitive implants can be ordered, 
with the possibility of component retention (e.g., during 
planned DAIR procedures for acute prosthetic infec-
tions). Third, the application of accurate AI algorithms 
in automated procedures is likely to result in significant 
time savings when compared to traditional human/man-
ual approaches. This translates into both time savings 
for clinicians [34], but also potentially reduced delays in 
surgery for such purposes—again with positive resource 
and cost implications [34], in addition to reduced patient 
risk and morbidity from otherwise unnecessary delays in 
surgery. Reducing the incidence of component mismatch 
also potentially avoids many (often significant) periop-
erative hurdles.

Modern AI applications have already been reported to 
be accurate in identifying [15, 33] both the manufacturer 
and model [34] of in situ TKA components. Using human 
observers as the comparative standard [36], most AI 
algorithms report > 90% accuracy [36] and consistently 
outperform senior orthopaedic specialists in this regard 
[38]. In an effort to understand the iterative processes 
underpinning such success, it has been suggested that DL 
applications likely rely on the identification of specific/
unique image features [12, 34], which may already exceed 
discernible human perceptual abilities. After 1000 train-
ing epochs, the DL model constructed by Karnuta et al. 
[34] showed near-perfect precision in identifying 9 sep-
arate implant types with an AUC of 0.99, and resultant 
accuracy, sensitivity and specificity of 99%, 95% and 99%, 
respectively [34]. While the limitation of the relatively 
small numbers of implant types included in most stud-
ies reported to date (i.e., usually < 10) is acknowledged 
[36, 38]—potentially limiting wider external validity 
[12]—proponents are quick to point out that the itera-
tive capacity of most DL/ML algorithms allows relatively 
uncomplicated scalable extension to other implants [34].

Other currently novel/less extensively studied imaging-
based AI applications in knee arthroplasty include the 
accurate diagnosis of component loosening from plain 
film X-rays [33, 36], prediction of postoperative hip-
knee-ankle axis (HKAA) [31], determination of mechani-
cal and implant alignment from standing long leg images 
[10], and the semi-automated 3D reconstruction of sec-
tional CT images to inform subsequent surgical robotic 
planning [44]. While certainly tantalizing extensions of 
image-based AI work in knee arthroplasty, further con-
firmatory evidence is required to support consideration 
of wider adoption [12].

Medical
From a non-surgical, medical perspective the great clini-
cal value of AI applications in knee arthroplasty has 
largely centred on predicting the outcome of medical 
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events/adverse events. In most instances, such studies 
to date have focused on a range of recognized periop-
erative/postoperative adverse events with the purpose of 
enabling prospective identification of “at risk” individuals 
and/or to allow the instigation of risk mitigating inter-
ventions [45]. Much of the success in this area has been 
facilitated by retrospective access to “big data” cohort 
sets (and thus the ability to train robust algorithms), 
often containing > 10,000 patients [33, 46]. The wide-
spread evolution from paper-based to electronic medical 
records (EMRs) [47] has often made this a less onerous 
step. Published reports have demonstrated the value of 
AI in predicting AKI [48], the risk of perioperative blood 
transfusion [33, 46, 49], the development of postopera-
tive delirium [47] or ischemic stroke [45], and even the 
likelihood of persistent or prolonged opioid analgesic 
requirement [50, 51].

Hospital/healthcare
Given the incredibly large volumes of data associated 
with patient management and episodes-of-care, it is 
perhaps not surprising that the broad application of AI 
in arthroplasty at the population level has been heavily 
investigated in the administrative domain. Leveraging 
readily available big data sources (e.g., the US National 
Surgical and Quality Improvement Database, etc. [52, 
53]) tens and often hundreds of thousands of patient’s 
records [26, 52, 53] have been drawn upon to inform AI 
algorithm training sets. Prediction of inpatient length 
of stay (LOS) [6, 26, 33, 53, 54], including prediction of 
same-day discharge likelihood [52], has been extensively 
studied, largely through associative-clustering. While 
such work has allowed identification of key considera-
tions associated with postoperative LOS (e.g., patient 
age > 75, Charlson Comorbidity Index score, BMI, and 
a number of specific comorbid conditions [54, 55]), in 
many instances the prospective predictive value of such 
applications has failed to outperform traditional “human” 
methods [56].

Beyond the simple determination of likely LOS, other 
applications have also explored the prediction of dis-
charge destination [3, 22, 33] following both primary 
and revision surgery [57]. Early work has demonstrated 
the multifactorial nature of such considerations, high-
lighting the complex interplay of critical patient factors. 
Much of this work has been retrospectively validated 
using institutional or heath network databases and the 
true prospective predictive value in many instances 
remains to be independently proven [1]. Similarly, clini-
cal events associated with the prediction of postoperative 
adverse events [58] and all-cause 90-day unanticipated 
readmission rates [59] have also been widely considered, 
although few meaningful studies have been successfully 

replicated away from the index reporting site. Thus, while 
such studies provide tantalizing evidence of future value, 
current generalizability is limited.

Parallel applications have included preoperative predic-
tion of inpatient costs associated with episodes of care [6, 
25, 26, 33], which has potential value in resource utiliza-
tion/allocation [18, 60] and strategic discharge planning 
[54]. In healthcare systems where reimbursement for cli-
nician and/or institutional services is variable and often 
tied to a number of episode-of-care related considera-
tions, payment prediction has also become a valuable AI 
application [25]. Such information can support bundled 
care payment schemes [26, 61] under the guise of either 
value-based or patient-specific care pathways [25, 26]. 
Large-scale work has enabled the identification of value 
metrics associated with TKA surgery [61] and—through 
cluster linkage—has allowed accurate determination of 
graded episode-of-care costs associated with various, 
common, severe patient comorbidities. Used judiciously, 
this information can accurately predict the cost of care 
for specific patient cohorts, recognizing that many 
patient health and social factors interact to influence this. 
This information may allow more evidence-based and 
justifiable allocation of health funding [22].

With the global pressure on elective surgical waiting 
lists exacerbated by the recent widespread COVID-19 
restrictions, novel AI applications have shown promise in 
the administrative management of the backlog of outpa-
tient and surgical waiting cases [62] and may aid in the 
nomination of best practice care pathways [62]. Authors 
of such work advocate the cost, time, and morbidity sav-
ings of accurately and timely directing patients to the 
treatment/healthcare management stream best suited to 
their clinical needs.

Surgery specific applications
Despite the widespread hype, AI applications in TKA that 
are actually related to the direct delivery or optimization 
of surgical care remain limited [15]. Again, playing on 
the recognized strengths of modern ML/DL algorithms 
in outcome prediction, much of the successful work in 
this area has been related either to decision-making aids 
[11, 18, 22, 63] for optimized patient selection [6, 7, 63], 
patient education [27] and expectation management [30, 
64], or to the identification of patients “at risk” of a poor 
or adverse outcome [15, 50, 59]. For patients in the latter 
group, such early identification may allow for the imple-
mentation of risk-reduction interventions/approaches 
[51] or support [65]. Index authors suggest that the appli-
cation of training algorithms in such settings does not 
increase preoperative consultation time [27] and may be 
valuable in optimizing postoperative patient satisfaction 
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[1, 27, 33, 66], functional recovery trajectory [11, 17, 27, 
30, 65] and formal PROM scores [1, 6, 20, 64].

Surgical and implant planning aids [6, 11, 67] have 
also been explored with highly demonstrated predictive 
accuracy [68] and potential time savings [67]. Early work 
has suggested disproportionate accuracy in prediction 
of final femoral component sizing although algorithm 
refinements are likely to show improved utility for tibial 
component sizing also [67]. Coupled with high-resolu-
tion preoperative imaging, AI applications have shown 
value in identifying anatomical landmarks to guide con-
struct alignment [69], which may benefit the precision 
obtained intraoperatively.

Individual studies have reported mixed efficacy in pre-
dicting the duration of surgery [53], surgical outcomes 
and complications [1, 60], the risk of infection (especially 
after multiple surgeries) [70] and early overall revision 
[21], and the likelihood of catastrophic implant failure 
[36]. While these are all exciting applications, much work 
remains to be done to validate such findings validated 
beyond proof-of-concept reports and to safely apply 
them in independent, non-designer, settings [68]. An 
open willingness to make developed DL algorithms avail-
able to other interested users will support this, but will 
ultimately be weighed up against competing commercial 
and intellectual property considerations.

Discussion
The world around us continues to change at an incred-
ible pace, and technological advancement continues to 
be a part of this. Not just in the realm of highly-special-
ized robotics and space ship applications, the creeping 
invasion of computers and AI into our everyday lives is 
widespread and long-standing. Many are surprised to 
be reminded that the AI-driven “Google search” func-
tion came into mainstream use 25 years ago (1998) [18]. 
Patients are living longer, with ever-increasing expec-
tation for sustained activity and quality of life [71–73]. 
Similarly, AI has found its way into medical and surgical 
fields, as it has into lower limb and indeed knee arthro-
plasty [1, 2, 16]. Having completed a comprehensive 
review of the published literature, it is clear that much 
of the work available for review represents either proof-
of-concept studies and/or the enthusiastic early results 
reported by algorithm creation sites. There exists scarcely 
little evidence of independent replication or validation of 
results in non-designed settings—as in any other clinical 
domain, this is a concern and greatly limits the evidence 
base that would otherwise be required to support wider 
adoption. While sometimes applications have sometimes 
been tested against accepted human “gold standards”, in 
many cases no clear (or fair) head-to-head comparison 
has been made. As such a number of studies are best 

classified as “demonstration of concept” rather than even 
“proof of concept”, as is often touted [5, 20]. No high-
level research evidence (i.e., no Level I or II studies) was 
identified in this emerging topic area, with limited Level 
III work available. The majority of the identified papers 
could best be considered as Level VI evidence (i.e., evi-
dence from single descriptive or qualitative studies). As 
with any emerging/novel topic area, this lack of quanti-
tative evidence will undoubtedly redress with time as 
further validation of early works and wider application 
occurs. While there has been much enthusiasm in the 
reported literature to date attempting to demonstrate 
value-added AI applications, it is important to recog-
nize that not all results have been good [6, 21], and that 
such algorithms have often failed to outperform (or even 
match) existing “human-driven” approaches [17, 44, 74, 
75].

Most of the published work can be grouped into one 
of four common areas: imaging-based/diagnostic appli-
cations, medical/adverse event prediction, hospital and 
administrative considerations, and surgical planning and/
or operative performance. There appears to be little over-
lap between the domains, and an apparent lack of cross-
collaboration between individual research efforts was 
noted. Most groups appeared to be working in silos—
seemingly “starting from scratch” rather than showing 
evidence of “building on the work of others”.

This review highlights many common shortcomings: 
first, there are many gaps in the current knowledge base 
regarding AI applications in TKA [1] that remain to be 
filled. Reported cohort sizes are often small [27, 32] and 
almost uniformly retrospective in nature, limiting gen-
eralizability/validity. Many reported studies are at high 
risk of confounding bias [36]. There is an urgent need to 
improve reporting standards [4] and data collection qual-
ity [5, 74] so that higher quality outputs can be more eas-
ily and consistently achieved. Larger (ideally prospective) 
studies are needed [48] with larger training datasets [1] to 
allow optimized algorithm refinement before extension 
to “real life” applications.

While most authors agree that AI/ML applications 
have the potential to rapidly improve the science, eco-
nomics and delivery of lower limb arthroplasty [2], 
extensive further study is still needed [1, 36, 66, 76]. AI 
has already shown much promise in TKA surgery [30] 
and has the potential to improve outcomes [77] and may 
help to identify/develop novel solutions to long-standing 
problems [16]. There is hope that AI may play a valuable 
role in reducing the recognized element of patient dis-
satisfaction after surgery [30, 78], with most authoritative 
sources still suggesting that approximately 15%–20% of 
patients report being “unhappy” with their TKA [65, 76, 
78]. This is likely to be achieved through a combination of 
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optimized patient selection and better executed (i.e., AI-
informed) surgical care.

While AI will certainly expand the boundaries of 
orthopaedic surgery [2], it is unlikely to replace human 
experience and traditional methods in the near future [7]. 
While the value is clear for simple tasks (particularly vol-
umetric processing applications), the ability of ML sys-
tems to accurately predict complex interactive outcomes 
remains imprecise [16, 33]. To facilitate the broader 
translation of AI models to real-world conditions [36], 
there is continued and increased collaboration between 
surgeons and scientists [16], while maintaining the com-
mon goals of benefit to the end user (i.e., the patient). 
Undoubtedly, AI applications in TKA represent a thriv-
ing and exciting area of contemporary medicine [71, 79], 
but there remains a need and responsibility to ensure 
that the scientific evidence base [36] that underpins the 
growth and adoption of such work is not overtaken by 
overly enthusiastic hype.

Conclusions
Despite widespread enthusiasm for the use of AI applica-
tions in knee arthroplasty, the evidence base to support 
such endeavours remains limited. Much of the quality 
work to date has focused on risk, cost and outcome pre-
diction—rather than actual surgical applications, per se. 
As this review highlights, many of the findings report-
ing the use of AI lack independent external validation in 
non-designer sites, and the transparent generalizability to 
non-specialist centres is largely absent. Much of the pub-
lished work suffers from confounding methodological 
limitations and biases, and inconsistencies in the purity 
of critical data sources are also concerning.

In a practical sense, in areas requiring the processing 
of large amounts of collected data, with relatively simple 
desired outputs, AI has often performed well and is likely 
to offer great time efficiency and consistency. However, 
for more complex tasks, AI has often failed to match 
the accuracy and reliability of traditional human-driven 
standards. As has been seen in other areas of medical 
(and non-medical) life, it is likely that AI will continue 
to be refined and advanced to find consistent value in 
many aspects of TKA. However, much high-quality work 
remains to be done to provide a robust evidence base to 
support consideration for more mainstream use and to 
ensure that the science behind such technologies keeps 
up with the hype.
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